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The development of a laminar boundary layer on a twisted helical blade is described. 
An appropriate co-ordinate system is developed in which the boundary-layer equations 
have a relatively simple form. The choice of blade geometry and the free-stream 
conditions result in a constant-pressure flow. This permits the flow to be considered 
the analogue, in a rotating frame, of the zero-pressure-gradient flat-plate boundary 
layer in a stationary frame. The boundary-layer equations are solved using a double 
series expansion in powers of distance from the leading edge and the cosine of the 
blade twist angle. Chordwise and spanwise velocity profiles are calculated. The 
variation in the skin friction coefficients is calculated as a function of position on the 
blade. 

1. Introduction 
The simplest application of the boundary-layer equations is for the flow along a 

thin flat plate in a uniform parallel stream. Owing to the simplicity of this solution i t  
has provided a basic flow to which various parametric perturbations may be applied. 
One example is the understanding of the initial stages of transition from laminar to 
turbulent flow in boundary layers obtained by applying linear perturbations to the 
flat-plate boundary-layer flow and observing, or calculating, their subsequent growth 
or decay. Further developments considering such effects as pressure gradients, 
curvature, or compressibility have not altered the understanding gained by examining 
t'he simplest primary flow. 

Such simplicity is rarely offered in the study of three-dimensional boundary layers. 
However the flow about a disk rotating in a fluid at  rest or the boundary layer on a 
yawed cylinder where the potential flow is a function of only one co-ordinate are 
problems whose solutions may be obtained by solving systems of ordinary differential 
equations. A number of solutions have been obtained for boundary layers on rotating 
surfaces. Fogarty (1951) studied the boundary layer on a semi-infinite flat plate 
rotating about an axis perpendicular to its plane and passing through its edge. The 
solution obtained was valid far from the axis of rotation but was extended by Tan 
(1953) to regions nearer this axis. The problem of boundary layers on rotating blades 
such as those on rotors in axial flow compressors was considered by Horlock & Words- 
worth (1965). Since such rotor blades are twisted about the leading edge such that the 
angle of attack with the oncoming stream varies with radial position, Horlock & 
Wordsworth introduced a co-ordinate system more suited to the geometry of their 
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helical blade. I n  this co-ordinate system a point in the blade surface was specified by x, 
the distance from the leading edge along a helical generator of the blade, and z, the 
radius of this helix. Points away from the surface were specified by y, their distance 
from the surface along a helix orthogonal to the blade surface. The (2, y, z )  co-ordinates 
formed a non-orthogonal system. Though Horlock & Wordsworth obtained the 
boundary-layer equations in this system, solutions were only obtained for a fixed 
blade twist angle. Though this accounted for blade stagger it ignored the effects of 
blade twist. Both Lakshminarayana, Jabbari & Yamaoka (1972) and Yamamoto & 
Toyokura (1974) used the same non-orthogonal co-ordinate system in their momentum 
integral studies of turbulent boundary layers on helical blades. Miyake & Fujita (1974) 
considered a rotating blade which was twisted, with the centre of twist, a t  the blade 
leading edge, so that the angle of attack was zero along the leading edge. The co- 
ordinate system used to analyse this problem was also non-orthogonal. The generators 
of the blade in their model were straight lines subtended a t  the blade leading edge, so 
that the blade had no streamwise curvature. For the simplest assumed free-stream 
flow in which streamlines were helices whose angle equalled the blade twist angle a t  a 
given radius the blade was slightly loaded. Miyake & Fujita noted that in order to 
analyse the effect purely of three-dimensionality of a blade the best way would be to 
adopt a helical blade with const,ant velocity along a blade element with the pressure 
constant everywhere in the flow field. Such an analysis is provided by the present 
paper. 

I n  the present paper the laminar boundary layer on a twisted helical blade is con- 
sidered. Though the blade geometry is the same as that proposed by Horlock & 
Wordsworth (1965) the blade is twisted about the leading edge in the manner of 
Miyake & Fujita (1974). This geometry is such that there is no spanwise or streamwise 
pressure gradient for the free-stream flow described above. Thus the flow may be 
considered to be the analogue, in a rotating reference frame, of the flat-plate boundary 
layer in a stationary frame. It is shown that a co-ordinate system which is orthogonal 
in the blade surface may be developed and with the appropriate scaling of the depen- 
dent variables a solution for the boundary-layer flow is readily obtained. 

2. Analysis 
Consider the boundary layer developing on the surface of the helical blade shown 

in the inset of figure 1.  The corresponding co-ordinate systems are shown in figure 1 .  
A point on the surface may be described by 

r = z sin Bi + x cos q5j + z cos Bk, (1)  

where z is the radial distance measured from the E2 axis, 8 is the polar angle measured 
about the E2 axis in a clockwise sense with 6 = 0 coinciding with the 5, axis, and x is 
the distance measured along a helix of radius z and helix angle 9. If the external flow 
a t  the leading edge is U in the t2 direction and the blade, whose leading edge is along 
the .& axis, rotates with an angular velocity i2 in a counter-clockwise sense about the 
5, axis, then for zero angle of incidence a t  the leading edge 

t a n 4  = Q z / U .  (2)  
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4 = f n  

FIGURE 1. Blade surface co-ordinate system with inset showing sketch 
of the twisted helical blade. 

Using the relationship between 8 and 4, 8 = x sin $12, a general point on the surface 
is given by 

(3) 
However, 

zcot4 = U / Q  = a ,  (4) 

r = z sin 8i + a8j + z cos 8k. ( 5 )  

The surface described by these points is called a ‘screw surface’. It is clear that, in 
spite of the apparent complicated curvature of the surface, lines of constant 8 in the 
blade surface are straight lines. The co-ordinate n is taken as normal to the surface. 
It is then readily shown that a general point away from the blade is described by 

r = zsin 8i +z8 cot dj + z  cos 8k. 

where a is a constant. So that, finally, 

r = (zsin 8 - n cos8cos 4) i + (a8 + n sin #) j + ( z  cos8 + nsin 8 cos 4) k. (6) 

The (z ,8 ,  n) co-ordinate system is found to be orthogonal in the blade surface, n = 0, 
and for cosq5 = 0, which corresponds to large radius. By this description alone the 
present co-ordinate system may not appear to hold any advantages over that used by 
Miyake & Fujita (1974); however, as will be seen below, the present system allows us 
to  describe a helical blade in co-ordinates which coincide with the directions of interest, 
both streamwise and chordwise. The boundary-layer equations for this geometry may 
then be readily obtained from either the boundary-layer equations in generalized 
co-ordinates (see Michal 1947) or from their vector form with the stretching factors 
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obtained from ( 5 ) .  It should be noted that in developing the boundary-layer equations 
only a definition of a surface point is required. 

The three-dimensional boundary-layer equations are found to be 

( 7 )  
au, sin@au, au, U, 
-+-- +-+-sin24 = 0, 
az z a8 an z 

au, sin@au, au, U; 1 aP a2uz 
ax 2 an z P 3.2 an2 ' 

au, sin@au, au, sin2@ sin4ap a2u, + 2 sin @Ru,+ v - az 2 an Z B ~ = - - -  an2 ' pz a8 

u,- + u, - - sin2@ = ----2sin@Qu,+Q2z+v- (8) a6 +u,---- 

a@ +u,-+u u (9) U, - + u, - - 

where u,, u,, u, are the velocity components in the z, n, 6 directions, respectively. 
Equation (7) is the continuity equation and (8) and (9) are the momentum equations 
in the z and 6 directions after the boundary-layer assumptions have been applied. 
The simplicity of the boundary-layer equations in this geometry should be noted. 
This relative simplicity, in comparison with the analyses of Horlock & Wordsworth 
(1965) and Miyake & Fujita (1974), is a result of the choice of an appropriate co-ordinate 
system. Following Miyake & Fujita the velocity in the free-stream is taken to have 
streamlines which are the intersection of the blade surface and a circular cylinder 
whose axis is the axis of rotation. Thus the free-stream velocity has components 

(K, K, w,) = (090, [ U 2 +  (W214). (10) 

It is then readily shown that 
ap/az = ap/as = o. 

Thus, as noted above, the static pressure is constant throughout the boundary layer 
(to the order of the usual boundary-layer assumptions). For the purposes of solution 
the @-momentum equation may be written more conveniently as 

z 

Following Miyake & Fujita, a solution is sought in the form 
rn W 

and 

where 

and quantities denoted by a tilde are of order unity. Thus E is a measure of the distance 
from the leading edge, 6 is a measure of the boundary-layer thickness (8 - [vs/Q]&) 
and L is a measure of the radial location. The quantity given by (13a) is the stream- 
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wise velocity component in the boundary layer, ug, divided by the free-stream 
streamwise velocity. Substituting series expansions of the form (13 )  into the boundary- 

with w-, = wo = 0 and Sij being the Kronecker delta function. This system of equa- 
tions has been solved for several values of k .  Only k = 0, l ,  2 are given explicitly here. 

Solution for k = 0 
Equations (15)  and (17)  yield 

and 
( 1 /x) au,/ae + aw,/an = 0 

z a6 O an QZ an2' 
au v a2u uo%+v 0 = - 0  

Introducing a stream function such that 

u0 = a$,/an, w0 = - (a@,/ae) /x  (20) 

$0 = ( 2 ~ 0 / W f o ( r ) ,  7 = n(R/2vW ( 2 1 )  

f t :  + f o f i  = 0, fJ0) =f@) = 0, f i (4- t  1, (22) 

and letting 

yields 

where primes denote differentiation with respect to 7. This is the Blasius problem 
for the flat-plate boundary layer. Note that the solution is valid for all values of 4. 

Solutio?~ f o r  k = 1 

Equations ( 1  5) ,  ( 1  6) and (1 7 )  become 

( I/Z) a(eu,)/aO+ a(Ow,)/an = 0, ( 2 3 )  

au v 82 
( 2 5 )  

o t ~ u ,  a -- uo a (eu,)+--+w - ( (ou , )+Bw,~  = --(0u1). ae z a6 Oan an Qzan2 

As before a stream function is introduced such that 
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Letting 

$1 = ( 2 v 0 3 / W f 1 ( r ) ,  
yields 

f: + f o f l -  2fif;+ 3f;fl = 0, fl(o) = fi(0) = 0, f;(CO) + 0. (28) 

This problem has the unique solution fl(r) = 0, so that 

u1 = v1 = 0. 
It is found in general that 

k = O , 1 , 2  ,.... I U2k+l = v2k+l = O, 

WZL = 0, 
Letting 

and using (23), gl(r) satisfies the problem 
w1 = sl(r) 

$7: +fo g; - 2f; g; + 2(f6  - 1 ) 2  = 0, &(O)  = = 0, gl(Co)+ 0. ( 32) 
Note that the solution for gl(r), which determines the lowest-order cross-flow velocity, 
is also independent of the twist angle q5. 

Equations (15) and (17)  give 
Solution for k = 2 

-- l a  a 2  i a  sin2 $ 
ax 2 ’  (O2U2) + - (0 v z )  = - - - (ZBW,) -ow1 - an (33) 

and 
02u2auo a au0 au 

--((82u2)+-- + ql& (PU,) + 82v, - + ow, 0 uo a 
z ae an az 

2 sin2 $ a 2  
0w1(uo- 1 )  = -- (02u,). (34) 

QZ an2 +- 
2 

An expansion in powers of cos2 q5 is introduced such that 
m 

u2 = c u2,21c21, 
1 = 0  

(36 a) 

m 
v2 = c v2,21c2z (3Bb) 

1 = 0  

in which c2 = cos2$. To order (c2)0 the equations are 

( i / z )  a(02zL20)/ao + a(O2vzO)/an = - 2Bw,/z, (36)  
uo a 02 au a au, 2ew1 v a 2  
- - ( o ~ u 2 0 ) + - u 2  -o+wo- (02u20)+02v -+-(uo-l) = --(82u2,). OZX an2 ao z O 80 an 2o an x 
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This procedure may be repeated for higher orders of (3) and higher values of k. The 
definitions of the higher-order stream functions and the problenis they satisfy are 
given in the appendix. The streamwise velocity has been found to be of the form 

u g  sin $ /Qz  = uo + B2u2 + 04u4 + . . . 
= j-6 + e2(f;, + cyi2) + 84(fi0 + cyi2 + cyi4) + . . . (41) 

and the spanwise or cross-flow velocity is found to be 

u,/oz = ew, + 0 3 ~ ~ ~  + 0 5 ~ ~ ~  + . . . 
= 09; + 03(gj0 + c2gj2) + 05(gL, + c2gSj2 + c4gL4) + . . . . (42) 

Defining a streamwise skin-friction coefficient as 

Cfe = ~[aue/anIn =o/ip(fiz/sin $1‘7 (43) 

and since !&/sin $ = We, it is readily shown that 

CfeRei = 4 2 { f ~ ( O ) + B 2 [ f ~ 0 ( O ) + c 2 f ~ 2 ~ 0 ’ ( 0 ) ] + O 4 [ f ~ ( O ) + c ~ ~ ( 0 ) + c ~ ~ ( 0 ) ] + . .  .} (44) 

where the Reynolds number is based on the distance from the leading edge along a 
helix of angle $. Thus the Reynolds number is given by 

(45) 

cfi = ,~Ca~~/an],,,/~p(nz/sin $)2 (46) 

R e  = W,x/v = z28/vsin2$. 

Similarly the spanwise skin friction coefficient may be defined as 

and 
cf,ReB = 4 2  sin ${Bg’;(O) + O3[gi0(O) + cag&(0)] 

+ 05[g10(0) + c2g12(0) + c4gi4(0) + . . .}. (47) 

3. Results 
The systems of ordinary differential equations for the stream function of the 

primary flow f2k,21 and the cross-flow g2k+l ,u  have been solved numerically. The 
numerical scheme and computer program used were those developed by Nachtsheim 
& Swigert (1965). The equations were written as a system of first-order differential 
equations and integrated with a predictor-corrector (Adams-Moulton) subroutine 
using one correction per step and a fixed increment. The step-size, Aq, was 0.0625 and 
the asymptotic boundary conditions were applied at  7 = 6.0. The solution was pro- 
grammed in double precision and the solutions up to k = 5 were obtained in 2.11 
seconds of processing time on an IBM 3033 system. The unknown initial conditions 
a t  the wall determining the slope of the velocity profiles are given in table 1. 

The functions f Z k , %  and g2k+l,21 are shown in figures 2 and 3, respectively. The 
function f h  is the Blasius solution for the flat-plate boundary-layer velocity. The 
function g;, which determines the cross-flow velocity to its lowest order, is identical 
with that obtained by Horlock & Wordsworth (1965) with sin@ = 1 and 
z Q / U  = - 1 ( P  = 1, Q = - 1, in their notation). This is also the solution to Fogarty’s 
(1951) problem of the rotating flat plate although, as noted by Horlock & Wordsworth 
(1965) the choice of co-ordinate syst’em omits a term involving ( f ; ) 2 .  The mean velocity 
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f 3 0 )  0.46960 g m  0.94073 
f 3 0 )  0.78997 giO(0) - 0.67246 
f.&(O) - 0.67202 9$2(0) 0.501 30 
f&(O) - 1.28978 Sgo(0) 1.32099 

fL (0 )  -0.56169 9 5 4 m  0.48453 

TABLE 1. Initial boundary conditions at  7 = 0 to five decimal places. 

f4m 1.82201 gga(0) - 1.73799 

6.0 

4.0 

-2 
m 

II 
F 

2 .o 

0 
-1.2 -0.8 -04 0 0.4 0.8 1.2 

f ' z k , z l  

FIGURE 2. Streamwise velocity profile shapes, f;,,,,. &, 0-0; f&, x - x ; 
f&, a-A;f;o, O-U;f,i, 0-0;f.L +-+. 

profiles in the 6 and z directions for $ = 90" and q5 = 45" are shown in figures 4 and 5 ,  
respectively. q5 = 90" represents the blade a t  large radius. As the polar distance from 
the leading edge increases so the streamwise velocity gradient at the wall increases 
and the magnitude of the cross-flow velocity increases. Since the differences with 
radius or twist angle are small, changes are better seen by considering the functions 
f2k ,  2, and g2k+l, 21 in figures 2 and 3. If only terms of up to order O2 are considered for the 
streamwise profiles then for q5 = 90" the scaled velocity, u, sin $/fiz, is increased a t  
all values of 77 since fho is positive. However as $ decreases this increase is reduced 
since fh2  is always negative. Close to $ = 0 there is almost complete cancellation of 
the order-e2 terms and the profile shape is nearly identical with the Blasius solution. 
A similar behaviour is observed for the cross-flow velocity profile up to order 83; 
however since g&, is negative and gi2 is positive the smallest scaled cross-flow velocities, 
uJQz, occur for $ = 90") at large radius. Thus the shape of the boundary-layer 
profiles are seen to be slowly varying functions of 8 and 2, since q5 is only a function 
of 2 .  Variations with z only occur to order O2 for the streamwise velocity component 
u, and to order O3 for the cross-flow or radial velocity component u,. However, it  
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FIGURE 3. Cross-flow velocity profile shapes, g.&+,,,,. gi, 0-0; 
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FIUURE 4. Streamwise (ue sin $/!&) and radial (u,/ lzz)  velocity profiles for various polar 

8 = n/6. 
distances from the blade leading edge; 4 = 90.0. -, 8 = 0.0; - - - -  , e = n/12;  ---, 
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0 0.2 0.4 0.6 0.8 1 .o 1.2 

u 0 sin @/52z, uzJ52z 

FIGURE 5 .  Streamwise (ue sin #/!&) and radial (u,/Rz) velocity profiles for various polar 
distances from the blade leading edge; # = 45O. -, 6 = 0.0; - - - - ,O = n/12; - - -, 6 = n/6. 

should be emphasized that in these profiles the velocity components have been scaled 
by the local free-stream velocity magnitude, !&/sin$ in the case of ug and the azi- 
muthal free-stream velocity component Qz in the case of u,. These variations in the 
profile shapes are also seen if the skin friction coefficient variations, given by (44) 
and (47), are examined. The streamwise skin friction coefficient, cfs,  is shown in figure 6. 
A t  the blade leading edge it is independent of the twist angle 4 and is that for the 
Blasius flat-plate boundary layer, 0.6641. Its value increases with distance from the 
leading edge as observed in the mean velocity profiles. The greatest increases occur 
at  large blade radius, q5 = 90". The distance from the leading edge along the blade 
surface in the streamwise direction is related to 6 and q5 by 

x/z = B/sinq5. (48) 

Thus for q5 = go", x / x  = 8. This enables comparison of the present results with those 
of Miyake & Fujita (1974). For the range of parameters they considered their results 
are the same as the present values since for q5 = 90" the blade geometries are identical. 
For q5 = 90" Miyake & Fujita computed values for cfe  up to 8 = 0.2. Only their 
calculation for 8 = 0.2 and 4 = 90" is shown for clarity. It should be noted that for a 
fixed value of 8 the distance along a blade element at  a given radius increases with 
radius. Thus at  a fixed value of x from the leading edge higher values of streamwise skin 
friction coefficient occur at  smaller radii. From equations (2) and (48) the value of 19 
for a fixed value of x is inversely proportional to C O S ~ .  Thus, for example, with 
q5 = 60" and 8 = 0-2, x = 0*4( U / Q )  and c f s  = 0.69. With x = 0.4( U / n )  and q5 = 45" 
then 8 = 0.2828 and c fe  = 0.71.  The variation of the cross-flow skin friction coefficient, 
cfz,  is shown in figure 7 .  At the leading edge the value is zero since there is no cross- 
flow. The value of cfz decreases with decreasing q5. Though as noted above for the 
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0 0.1 0.2 0.3 0.4 0.5 
Polar distance from the leading edge, @(radians) 

FIGURE 6. Variation of streamwise skin friction coefficient (c,s Ref) with polar distance from 
the blade leading edge. -, 4 = 90"; - - - ,  ,$ = 60"; -- -, 4 = 45". 0 ,  Miyake & Fujita 
(1974),  4 = 90", 6' = 0.2.  

0 0.1 0.2 0.3 0.4 0.5 
Polar distance from the leading edge, @(radians) 

FIGURE 7. Variation of radial or cross-flow skin friction coefficient ( c f r  Ret) with polar distance 
from the blade leading edge. -, 4 = 90"; - - - -, 4 = 60"; - - -, # = 45". 

streamwise coefficient, the value increases with decreasing $ for fixed helical distances 
x from the leading edge. The magnitude of cfi approaches the magnitude of the 
streamwise coefficient, cfe ,  for values of B about 0.5. 
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4. Conclusions 
The analysis has shown that by appropriate choice of the co-ordinate system the 

three-dimensional boundary layer on a rotating blade may be calculated without 
restricting the results to  blades with no twist as in Horlock & Wordsworth (1965), or 
to twisted blades with no streamwise curvature as in Miyake & Fujita (1974), which 
results in a non-zero pressure gradient. The twisted helical blade analysed in this 
paper was shown to be a screw surface and the resulting boundary layer is the analogue, 
in a rotating reference frame, of the zero-pressure-gradient flat plate boundary layer. 
It should be emphasized that though the numerical results of the present paper are 
similar to those obtained by Miyake & Fujita (1974) the choice of co-ordinate system 
enables the effects of blade stagger and twist for a workless, or zero-pressure-gradient 
blade boundary layer to be readily developed. The boundary-layer calculations in 
this paper serve several purposes. They provide the initial conditions for the calcula- 
tion of the wake behind a rotor blade of finite chord, with the geometry of the present 
paper. They provide the basis for comparison as verification for other computational 
methods which are more readily extended to  variations of the present simple geo- 
metry. If transition from laminar to turbulent flow in the boundary layer is taken to  
be the result of small disturbances of the Tollmein-Schlichting type, rather than due 
to disturbances in the free stream, then the present analysis provides a simple primary 
flow which, in the limit of zero rotation, is the Blasius flat-plate boundary layer. 

The author is grateful to Dr A. Solan and Dr M. Ungarish, Technion-Israel Insti- 
tute of Technology, for noting an algebraic error in the original manuscript. The 
support of NASA Lewis Research Centre under grant number NSG 3265 is also 
acknowledged. 
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